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Overview of Symbolic Music Generation

e Symbolic music formats
o MIDI, typesetting (e.g. musicXML), text-based notations (e.g. ABC)

e Tasks

o Melody-to-Melody or Song-to-Song: continuation, interpolation, infilling
o Melody-to-{Song, Chord, Lyrics, ...}: harmonization/arrangement
o Score-to-Performance MIDI: performance rendering

Score MIDI

<score lang="ABC">
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MuseNet

e Song continuation

STYLE CHOPIN ~

INTRO BEETHOVEN'S FUR ELISE ~
INSTRUMENTS PIANO STRINGS WINDS DRUMS HARP GUITAR BASS

NUMBER OF TOKENS B ] 225

HIDE ADVANCED SETTINGS

STOP PLAYBACK + DOWNLOAD -~ W TWEET C RESET

https://openai.com/index/musenet/



https://openai.com/index/musenet/

CoCoNet

e Harmonization
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Celebrating Johann Sebastian Bach
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Copa América 2015 - Semifinals #1 - Chile v Peru

Go behind-the-scenes of today’s Doodle below!

Google wnNl Yea

hitps://magenta.tensorflow.org/coconet



https://magenta.tensorflow.org/coconet

VirtuosoNet (2019)

e Music XML > Performance MIDI

KAIST Music and Audio Computing Lab



Overview of Symbolic Music Generation

e 1D Models
o Represent symbolic music data as discretized token sequences
o Train a language model using the 1D token sequences
o Generate new tokens from the trained model in an auto-regressive way

e 2D Models
o Represent symbolic music data as continuous image streams (piano-roll)
o Train an image generation model using the 2D image
o Generate new image outputs from the trained model chunk by chunk



MIDI

e Standard protocol of musical events

e Why MIDI?
o Need of musical communication among different vendors’ instruments
o Store music events (score or performance) for composers

e Hardware
o 5-pin cables, separate in/out in connection
o 31250 bits per second

e Software (Protocols)
o Note number/velocity, control data




MIDI

e MIDI Message Format

Status Byte

Note Off 1000 XXXX
Note On 1001 xxxX
Note Pressure 1070 xxxx

Control Change 1011 xxxx

Program Change 1100 xxxx

Pitch Bend Change 1110 xxxx

Data Byte1

Note Number
Note Number
Note Number

Ctrl. Number

Data Byte2

Velocity
Velocity

Velocity

Ctrl Value —> 64: piano sustain pedal

Prog. Number -

Value (high 7bits) Value (low 7bits)

xxxx: channel number (0-15)

Data byte: 0-127 (MSB is 0)



MIDI as a File (.mid)

e Time signature (e.g. 4/4) and tempo (120 bpm) added

o Time unit is changed to measure/beat unit
o Time resolution: “tick” (e.g. 9600 ticks/beat)

o Atime interval from the previous eventis added to

each MIDI message

e MIDI Representations
o 1D sequence of note events
o 2D piano-roll images

e “Score MIDI" vs. “Performance MIDI”
o The beat unitis not meaningful in
Performance MIDI

Source: https://kr.mathworks.com/help/audio/ug/convert-midi-files-into-midi-messages.html

Header
Headerchunk data chunk
chunkIndex [~ Track chunk header Track
chunk
MIDI A-time
event MIDI message
chunklLength A-time
MIDI message
A-time
MIDI message
nkind Track
chunk
u
chunkLength — u
u

[ ®00
A
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Note 1/a 127 106
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Note 1 A#l | 125 80
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121 1 Note 1 F#1 125 132
2 1 Note 1 F#l 90 194
3 1 Note 1/ 127 128

1 Note 1 F#l 125

1 Note F#1 8
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1 Note 1 E1 125 .. 218
1 41 1 Not 1|F#l 127 .. 110
1 Note 1 F#l | 83 ... 28
211 1 No 1.0 127 ..2 s




MusicXML

e Markup language for music typesetting (or engraving)
o Aim to render a realistic music score

<measure number="1">
: e 5
<attributes> Sonate No. 8, “Pathétique
<divisions> 1</divisions> >
<key> 3rd Movement :
<fifths>0</fifths> Rondo Opus 13 : Ludwig V?;‘gge_‘l}‘;“;‘;
/key: Allegro o

<time>
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<beat -type> e e e s t
</time> Piano » e

lef 7 - P I====a
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</clef> .
</attributes> . - . - R N
f wr et X
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<pitch> AL o ﬁﬁ—\ fiz oY
istep>Ce/step> b’ | =1 e P sopoif Lo of
<<<<<<<< 4</octave> g? | =i —= l l}’[. 9[&‘.[& é T : ™
/pitch> T . e /‘ . P
duration>4</durati herf oof et e o2 oo o2 P
< hole</t D i e e e e e e e e R e e e e o e e e e B i
vp vp T 0 s s o e o e e P i e
et EESREEEE -
</measure>
</part>

e Can be converted to MIDI but lose information (expressions, clef,
articulation)

e There are other music typesetting formats: Lilypond, ME|, ...



ABC Notation

e A simplified musical notation format
o Focus on monophonic melody

<score lang="ABC"> )
X:1 The Legacy Jig
T:The Legacy Jig .
M:6/8

L:1/8

R:jig

K:G

GFG BAB | gfg gab | GFG BAB | d2A AFD |

GFG BAB | gfg gab | age edB |1 dBA AFD :|2 dBA ABd |:
efe edB | dBA ABd | efe edB | gdB ABd |

efe edB | d2d def | gfe edB |1 dBA ABd :|2 dBA AFD |]
</score>

e There are other simplified music notation formats
o Humdrum (kern representation), JAM notation (chord), Music Macro
Language (game music)

_ . Ki/ABC_notati


https://en.wikipedia.org/wiki/ABC_notation

1D Models

e Language model in natural language processing
o Auto-regressive model: predict what comes next

blue
The sky is so beautiful Language Model
dark
X1 Xo X3 X4 ...
p(xt |xlr et xt—l)
e Musical |anguage model X;: input/output representation vector

o Predict what comes next in a note sequence

‘_-___-_---""‘--
H| -.'_FF:F.,—H -
m,_:‘.[ | ¥
b =1

X1 X2 x3 x4



e Segment the data into a sequence of tokens
o Atoken is one of the vocabulary formed by the tokenization methods
o Itis represented as an one-hot vector or an index number

e Language tokenization

o Character > Sub-word - Word

m A trade-off between vocabulary size and sequence length
m Out-of-vocabulary issue

o Byte-pair encoding (BPE) is used for the sub-word tokenization

e Symbolic music tokenization
o MIDI-like, REMI, CPWord, Octuple, MMM, ...
o https://miditok.readthedocs.io/



https://miditok.readthedocs.io/

Learning models

e Need to learn the structure of music
o Melody and accompaniment
o Repetition and variation (self similarity)
o Consistent generation: note patterns or style

e Learning Models
o RNN, VAE, Transformer

e Model evaluation
o Objective: statistical metrics
o Subjective: listening test




PerformanceRNN

e Dataset and goal
o MAESTRO: performance piano MIDI files
o Simultaneously composting and performing piano music

e Tokenization
o “MIDI-like”

e Models
o A simple auto-regressive RNN model

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, lan Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018



MIDI Tokenization

e Fourtypes of MIDI-like event

o Note-on (128 pitches), note-off (128 pitches), set-velocity (32 quantized

velocities), time-shift (100 shifts: 10ms to 1000 ms)

o 388-dim one-hot vector (388=128+128+32+100) - 388 vocabulary tokens

127

127

0{[0[0|1]0|0f(0|0]O 0([0]0]|O0 0
0 127 0 127 0 31 0 99
0{0(0|0|0O|0Of0O|O0]O 0([0]0]|O0 0
0 127 0 127 0 31 0 99
0{0(0|0|0O|Of0O|O0]O 0[1]0]|0 0
0 127 0 127 0 31 0 99
0{[0(0|0|0O|0Of0O|0]O 0([0]0]|O0 0
0 0 0 0

99

Note-On

Note-Off

Set-Velocity

Time-Shift

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, lan Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018



MIDI Tokenization

e Thetime shift event compresses sustained note states into a single event
o A typical 30-sec clip might contain about 1200 event tokens

Performance Representation: Example

SET-VELOCITY<31>
NOTE-ON<C4>

TIME-SHIFT<640ms>

NOTE-OFF<C4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON<F3>

SET-VELOCITY<31>
NOTE-ON<C4>

TIME-SHIFT<640ms>

NOTE-OFF<C4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON<F3>

SET-VELOCITY<31>
NOTE-ON<C4>
TIME-SHIFT<640ms>
NOTE-OFF<C4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON<F3>

SET-VELOCITY<31>
NOTE-ON<C4>
TIME-SHIFT<640ms>
NOTE-OFF<C4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON<F3>

SET-VELOCITY<31>
NOTE-ON<C4>
TIME-SHIFT<640ms>
NOTE-OFF<C4>
TIME-SHIFT<24ms>
SET-VELOCITY<25>
NOTE-ON<F3>

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, lan Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018



RNN-based Model: Training

e Data augmentation
o Tempo change and key transpose

e Three layers of LSTMs and the softmax output
o One-hot MIDI-like event vector
o The cross-entropy loss
o Teacher-forcing: the ground output is used for input
instead of the predicted output in the training phase
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RNN-based Model: Inference

e Generate the output using the trained model

o Start from a random sample (unconditional) or an initial conditional input

(“priming” or “continuation”)
o Sample from the softmax output: multinomial distribution

o The sampled output is used as input at the next step ~ f2y % o\ B
! \ 4 \ \ : Sample
(I I A I
e
A
CINCRY TN
S
R

An intuitive animation about auto-regressive models: U b b



https://twitter.com/i/status/1327775912352493568

RNN-based Model: Inference

e The softmax temperature controls musical diversity

o 1>1:P;becomes more uniform
m Morediverse output are generated

o T <1:P,becomes more spiky
m Less diverse output are generated

T>1

exp(Sw/T)
Ly €Xp(Sw! /T)

Softmax output

P(w) = =1

-
I

<1




RNN-based Model: Result

e Generation examples (unconditional generation)
o https://magenta.tensorflow.org/performance-rnn

e |[ssues
o Theresult sounds natural in short terms but note patterns are not coherent
and keeps diverging: the long-term dependency issue
o Need better models capable of learning wider music context


https://magenta.tensorflow.org/performance-rnn

Evaluating Music Language Model

e Objective evaluation

o Perplexity (PPL): measure the likelihood of the generated output
m Inverse probability of the corpus T 1
m Lower PPLis better P(X) = 1_[( YUT
. . . _ Ppp(xelx<t)
o Comparing musical statistics t=1
m Pitch: pitch count, pitch class histogram, pitch transition histogram, pitch range
m Rhythm: note count, average inter-onset-interval, note length histogram, note
length transition histogram

e Subjective evaluation
o Mean opinion score (MOS): scale from 1 to 5

On the evaluation of generative models in music, Li-Chia Yang, Alexander Lerch, Neural Computing and Applications, 2020



Issue in the RNN-based Model

e There is a large contextual gap between the input and the output
o For different random inputs, the generated output sequences will be arbitrary

Random Generative
Seed 1 Model




Issue in the RNN-based Model

e Can we feed a random continuous vector that governs the entire context
of the output such that the input renders a smooth transition of

generated sequences ?

Random

Continuous Vector

Generative
Model

—» X3, X3, X3, X5, Xg, .-

-~
- ~




Auto-Encoder

e We can compress the context of the sequence into a single vector using

the auto-encoder structure
o But, can we sample a random vector and generate a meaningful sequence

from the latent space? Random

Continuous Vector?

Generative

— X9, X3, X3, X5, Xg, .-
Model

X2, X3, X4, X5, Xg, 1o —————> Encoder —— > h T




Auto-Encoder

e The latent space may not be continuous
o There are empty space between the latent vector clusters
o The generated output from the empty space will be different from what you

expect to have Randorm

Continuous Vector?

X2, X3, X4, X5, Xg; 100 ——P Encoder —> h —> Decoder —> X2, X3, X4, X5, Xg) .-

Source: https:


https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Auto Encoder (VAE)

e Model the latent space using randomly sampled latent vectors with a

probabilistic model such as Gaussian
o The encoder yield two vectors for mean and standard deviation

Encoder

Decoder

— X9, X3, X3, X5, Xg, .-

random sample = u + oz
Standard (z~N (0,D))

Deviation




Variational Auto Encoder (VAE)

e Optimize the network using the maximum likelihood estimation

o The estimation is intractable and so an approximated method is used:
m Maximize the lower bound of the log likelihood

o This ends up with minimizing two terms: the reconstruction error and KL
divergence between the Gaussian distributions

((W;x) = llx = 2I1* + KLV (u(x), 0(x)) | M(0,D)

A

Reconstruction error KL divergence: make the distribution of
latent vectors have zero mean and unit
variance

Auto-Encoding Variational Bayes, Diederik Kingma, Max Welling, 2014



Variational Auto Encoder (VAE)

e Re-parameterization
o Enables gradient flow by detouring the sampling process

Mean

X2,X3, X4, X5, Xg) 1o ————P Encoder

A
L h
T\ Decoder  |—> X2,X3, X4, X5, X¢, ...

Standard
Deviation | |<----random sample

z~N (0,1




Variational Auto Encoder (VAE)

e Distribution in the latent space
o By using both KL divergence and reconstruction error, the space can be
discriminative as well as continuous

8 8
o
. ; .v : > i ,
B U »
B o C N a s
g ; < A
colg e ‘o Y B0 ? " 2 .
%% €S b
AT ¥ 3 = wd
ce "% - P . wWe > Y
I S Wl b 4 z e AN,
}x caet, om oW B £ b 5o ) \.
AR ROY IR N - Fooe 7
N LR Pyt —
o S5 A A & Y .
v T 2 R et
X S -2 ¢ .
s s % .
* %" R

Reconstruction only KL divergence only Both

Source: https:



https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Auto Encoder (VAE)

e The encoder-decoder can be any neural network module

o CNN: image audio
o RNN: text, symbolic music

Sample

—> Encoder |i|%

VAE with CNN

Decoder/
Generator

Sample  « dove’  you  <EOS>
Encoder A\ TDecodTer/Gen%rator T
> —>|:|——> > — — >
“love” “you” <EOS> “p “Love” “you"

VAE with RNN
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e Generate data by taking a random vector from the unit Gaussian

o Data manifold are generated from varying z

random sample

N
AN NANNNANRN NN NNNNSNS
VAN EHBAELLLLLUWN NN~
QAL LLVVYY YN~~~
QAVVDNININntotote ©VOVVW W~~~
QOVVNHINHININ O B BDIVI W - ——
QOAVOVNOHIHINNNHWHBBDIVIY W - ——
QAOOOMHIMMMMM M DIID D - ——
QOO MHMMMMMNDIODD S w o — —
QOO M) M) 0N WD DD 0 e e —
QOMWOM MMM M0N0 WWD DD e e —
QO MMM MM N L0000 e o am e —
QAOMME M " " 000000 O N n o -
GNP o~~~
Gl rororororrressoonr~
Jadaddadogorororrrrrraann~N
YaadadddorrrrrrrTITIINN
SddddgrrrrrrrrFIITRIINN
SAddTTTTrrrrrrrII™2R2R™NN
S I g gl ol ol ol ol ol ol ol Ol U L N N NN

T

shape)

Decoder/
Generator

z~N (0,1

Z, (pose)

Z, (tilt + more )

Generation from the 2-D latent space z

Auto-Encoding Variational Bayes, Diederik Kingma, Max Welling, 2014



Variational Auto Encoder (VAE)

e Generate data by taking a random vector from the unit Gaussian
o Data manifold are generated from varying z

no . this was the only way .
he said . z:t was ;Lhe only wag{)l._ i
“no . ” he said . it was her turn to blink .
TDecodTer/Gen%rator T “no : » i said . it was hard to tell .
A e it was time tq move on .
“« thank y:rm egh ol he had to do it again .
W ,m,e ” she s;zi d they all looked at each other .
iy . ; they all turned to look back .
“ talk to me , 7 she said .

they both turned to face him .

“ do n’t worry about it , ” she said . they both turned and walked away .

random sample
z~N (0,])

Interpolated sentences between pairs of random points in the
latent space z

Generating Sentences from a Continuous Space, Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, Samy Bengio, 2016



MusicVAE

e Encoder: bidirectional RNN
o Thetwo hidden units at both ends are concatenated
o The latent vector corresponds to a measure-level unit (2 bar ~ 16 bars)

e Decoder: hierarchical RNN Yttt e et
o Conductor RNN: learns high-level ot
dependency in the measure level Latet
o Language model RNN: condition l
from the conductor RNN is
concatenated with the previous
output as input at the next step

i

Conductor

|

Decoder

A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music, Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, Douglas Eck, 2018



MusicVAE

e Training dataset

©)

O O O O

The Lakh MIDI dataset: Multi-track score MIDI

Use piano roll but quantized notes to 16™ note events

Handle monophonic note sequences only (melody notes)

One event is 130 dimensional vector: note on (128 pitches), note off, rest
The input length of RNN (T) is 256 which corresponds to 16 measures (bars)

D8

D7 —
D6 e —m————=
D5 —

D4



MusicVAE

e Generate a continuous transition of music generation on the latent space
o Beat-blender: continuous move on the latent space to generate
gradually changing music sequence
o Melody mix: interpolation between two different melodies

e Demo
o https://magenta.tensorflow.org/music-vae

) Meiody-'M-ix-er.-(inte-rpolation)


https://magenta.tensorflow.org/music-vae

2D Models

e Generate music data as a 2D image
o Symbolic domain: MIDI
o Audio domain: spectrograms or other time-frequency representations

e Image generation models
o VAE, GAN, Diffusion, ...

|

random sample
z~N (0,1)

Decoder/
Generator




Variational Auto Encoder (VAE) for 2D Image Generation

e CNNs or Transformers are commonly used in this setting
o Fast generation using parallel computing
o The latent vector can be used to control the global structure
o However, the generated result is often blurry (L1 or L2 distance)

random sample
z~N (0,1)

Encoder |:|%

Original data

Generated output Original data

Decoder/
Generator

L1 or L2 distance



Generative Adversarial Network (GAN)

e Two-player game
o Discriminator network: distinguish the generated output from the real ones
o Generator network: fool the discriminator by generating the realistic output

|:|% Generator

random sample
z~N (0,1

Generated output

N

- TR

Discriminator [(—> 17 or “0”

Original data

L " R

Generative Adversarial Networks, lan J. Goodfellow et al., NIPS, 2014



Training GAN

e Step #1: initialize the generator and discriminator networks

e Step #2: fix the generator network and generate the output

e Step #3: update the discriminator network as a binary classifier

random sample
z~N (0,1

|:|+ Generator

Generated output

Update

Discriminator [—> 17 or “0”




Training GAN

e Step #4: fix the discriminator network and update the generator network
o Tryto fool the discriminator by increasing the output score (or generating
real-looking images)

e Step #5: repeat step #2, #3, and #4 until convergence

Update

Generated output
\

Q-

Discriminator [—> "1"‘

random sample
Z~ (0,1) Generator

Increasing score

Back-propagation on this network



Generative Adversarial Network (GAN)

e Minimize the minimax loss
minmax Ex-p,,..c [log D(x)] + Ez~pz(z)[log(1 - D(G()))]

G D T

(Negative) logistic loss:  Positive examples Negative examples

o Discriminator: maximize the objective function such that D(x) is close to 1
and D(G(x)) is closeto 0
o Generator: minimize the objective function such that D(G(x)) is close to 1



Generative Adversarial Network (GAN)

e Alternatively,
o Discriminator: maximize the objective function such that D(x) is close to 1

and D(G(x)) is close to 0
m Gradient ascent on the discriminator

max Ex~Pyatac [log D(x)] + Ez P, [log(1 — D(G(x)))]

o Generator: maximum the objective function such that D(G(x)) is close to 1
m Gradient ascent on the generator

m This alternative objective is more easily trained \ '

S~ T

min Ezp, [log(1 - D(G()))] — max Ezp,,, [log D(6())] o gradémf\

Low gradient signal

[Stanford CS231n]



Issue in Training GAN

e The discriminator provides the generator with gradients as a guidance

forimprovement
o Discrimination is easier than generation
o Discriminator tends to provide large gradients
o Result in unstable training of the generator

e There are alternatives of the original minimax loss
o Wasserstein loss: critic instead of discriminator
o Boundary Equilibrium GAN (BEGAN): fast and stable convergence

e Readings
o https://lilianweng.github.io/posts/2017-08-20-gan/
o https://arxiv.org/abs/2001.06937



https://lilianweng.github.io/posts/2017-08-20-gan/
https://lilianweng.github.io/posts/2017-08-20-gan/

GAN vs VAE

e When a model does not have enough capacity to capture all the

variability in the data, different compromises can be made
o GAN has the mode-seeking nature: causes mode collapse or mode missing
o VAE has the mode-covering nature: causes blurred output

ol AL

mode-covering mode-seeking

Image source: Sander Dieleman: hitps://sander.ai/2020/03/24/audio-generation.html


https://sander.ai/2020/03/24/audio-generation.html

MIDINet

e Convolutional GAN for one-bar melody generation
o Generate a piano-roll matrix
o Conditioned on the previous bar or on the chord

Conditioner CNN

‘..\\ convi  conv2  convd  convé
2
2 ”ﬂ"fions \\\ Y T

B project and reshape e =T
- ~ -

project and reshape

S e Xores [0.1]
project and reshape ‘ "aggxfed lrag:g\omsed "agﬁsged lraxmjed convl conv2 fully connected output
Generator CNN Discriminator CNN

Demo page: hitps://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html

MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation, Yang et al., ISMIR, 2017


https://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html

MuseGAN

e Convolutional GAN for multi-track MIDI generation
o 5 tracks (bass, drum, guitar, piano, strings& others) and 4 bars
o Learn cross-track and cross-bar dependency

(a) Generation from scratch

conditional bar generator, G,

E
(b) Composer model r—— | - - ’ @) CaTN
§ ,

q Gt ) 1
B
1

D real/fake

#, L (e, 2)

5 generators (b) Track-conditional generation

(c) Hybrid model & 1 discriminator

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, Dong et al., AAAI 2018



MuseGAN

e Convolutional GAN for multi-track MIDI generation
o 5 tracks (bass, drum, guitar, piano, strings& others) and 4 bars
o Learn cross-track and cross-bar dependency

GiemylZ,) I
i quens .'
Cromp #
] ==
time

x(

quene

concat [

= [ .

= 'E'E'L_Fq myi= g —
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Demo page: hitps://hermandong.com/musegan/

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, Dong et al., AAAI 2018
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