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Symbolic Music Generation: Basics



Overview of Symbolic Music Generation

● Symbolic music formats

○ MIDI, typesetting (e.g. musicXML), text-based notations (e.g. ABC)

● Tasks

○ Melody-to-Melody or Song-to-Song: continuation, interpolation, infilling

○ Melody-to-{Song, Chord, Lyrics, …}: harmonization/arrangement 

○ Score-to-Performance MIDI: performance rendering



● Song continuation

MuseNet

https://openai.com/index/musenet/

https://openai.com/index/musenet/


● Harmonization

CoCoNet

https://magenta.tensorflow.org/coconet

https://magenta.tensorflow.org/coconet


VirtuosoNet (2019)

● Music XML → Performance MIDI

KAIST Music and Audio Computing Lab



Overview of Symbolic Music Generation

● 1D Models

○ Represent symbolic music data as discretized token sequences

○ Train a language model using the 1D token sequences

○ Generate new tokens from the trained model in an auto-regressive way 

● 2D Models 

○ Represent symbolic music data as continuous image streams (piano-roll)

○ Train an image generation model using the 2D image

○ Generate new image outputs from the trained model chunk by chunk



MIDI

● Standard protocol of musical events

● Why MIDI?

○ Need of musical communication among different vendors’ instruments

○ Store music events (score or performance) for composers

● Hardware

○ 5-pin cables, separate in/out in connection

○ 31250 bits per second

● Software (Protocols)

○ Note number/velocity, control data



MIDI

● MIDI Message Format

Status Byte Data Byte1 Data Byte2

1000 xxxx Note Number VelocityNote Off

1001 xxxx Note Number VelocityNote On

1010 xxxx Note Number VelocityNote Pressure

1011 xxxx Ctrl. Number Ctrl ValueControl Change

1100 xxxx Prog. Number -Program Change

xxxx: channel number (0-15) Data byte: 0-127 (MSB is 0)

1110 xxxx Value (high 7bits) Value (low 7bits)Pitch Bend Change

64: piano sustain pedal



MIDI as a File (.mid)

● Time signature (e.g. 4/4) and tempo (120 bpm) added

○ Time unit is changed to measure/beat unit

○ Time resolution: “tick” (e.g. 9600 ticks/beat)

○ A time interval from the previous event is added to 

each MIDI message

● MIDI Representations

○ 1D sequence of note events

○ 2D piano-roll images

● “Score MIDI” vs. “Performance MIDI”

○ The beat unit is not meaningful in

Performance MIDI 

Source: https://kr.mathworks.com/help/audio/ug/convert-midi-files-into-midi-messages.html



MusicXML

● Markup language for music typesetting (or engraving)

○ Aim to render a realistic music score 

● Can be converted to MIDI but lose information (expressions, clef, 

articulation)

● There are other music typesetting formats: Lilypond, MEI, … 

MakeMusic, Inc. Page 10 December 2017 

"Hello World" in MusicXML 
Brian Kernighan and Dennis Ritchie popularized the practice of writing a program that prints the 

words "hello, world" as the first program to write when learning a new programming language. It 

is the minimal program that tests how to build a program and display its results. 

In MusicXML, a song with the lyrics "hello, world" is actually more complicated than we need 

for a simple MusicXML file. Let us keep things even simpler: a one-measure piece of music that 

contains a whole note on middle C, based in 4/4 time: 

 

Here it is in MusicXML: 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<!DOCTYPE score-partwise PUBLIC 

    "-//Recordare//DTD MusicXML 3.1 Partwise//EN" 

    "http://www.musicxml.org/dtds/partwise.dtd"> 

<score-partwise version="3.1"> 

  <part-list> 

    <score-part id="P1"> 

      <part-name>Music</part-name> 

    </score-part> 

  </part-list> 

  <part id="P1"> 

    <measure number="1"> 

      <attributes> 

        <divisions>1</divisions> 

        <key> 

          <fifths>0</fifths> 

        </key> 

        <time> 

          <beats>4</beats> 

          <beat-type>4</beat-type> 

        </time> 

        <clef> 

          <sign>G</sign> 

          <line>2</line> 

        </clef> 

      </attributes> 

      <note> 

        <pitch> 

          <step>C</step> 

          <octave>4</octave> 

        </pitch> 

        <duration>4</duration> 

        <type>whole</type> 

      </note> 

    </measure> 

  </part> 

</score-partwise> 

Let's look at each part in turn: 

 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

MIDI



ABC Notation

● A simplified musical notation format 

○ Focus on monophonic melody

● There are other simplified music notation formats

○ Humdrum (kern representation), JAM notation (chord), Music Macro 

Language (game music)

https://en.wikipedia.org/wiki/ABC_notation

https://en.wikipedia.org/wiki/ABC_notation


1D Models

● Language model in natural language processing

○ Auto-regressive model: predict what comes next

● Musical language model

○ Predict what comes next in a note sequence  

𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

𝑥𝑖: input/output representation vector 

𝑥1 𝑥2 𝑥3 𝑥4…

The sky is so

𝑥1 𝑥2 𝑥3 𝑥4…

blue

dark

beautiful Language Model



Tokenization

● Segment the data into a sequence of tokens

○ A token is one of the vocabulary formed by the tokenization methods

○ It is represented as an one-hot vector or an index number

● Language tokenization

○ Character → Sub-word → Word

■ A trade-off between vocabulary size and sequence length  

■ Out-of-vocabulary issue

○ Byte-pair encoding (BPE) is used for the sub-word tokenization

● Symbolic music tokenization

○ MIDI-like, REMI, CPWord, Octuple, MMM, …

○ https://miditok.readthedocs.io/

https://miditok.readthedocs.io/


Learning models

● Need to learn the structure of music 

○ Melody and accompaniment 

○ Repetition and variation (self similarity)

○ Consistent generation: note patterns or style

● Learning Models 

○ RNN, VAE, Transformer

● Model evaluation

○ Objective: statistical metrics 

○ Subjective: listening test



PerformanceRNN

● Dataset and goal

○ MAESTRO: performance piano MIDI files

○ Simultaneously composting and performing piano music

● Tokenization

○ “MIDI-like” 

● Models

○ A simple auto-regressive RNN model 

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018



MIDI Tokenization

● Four types of MIDI-like event 

○ Note-on (128 pitches), note-off (128 pitches), set-velocity (32 quantized 

velocities), time-shift (100 shifts: 10ms to 1000 ms) 

○ 388-dim one-hot vector (388=128+128+32+100) → 388 vocabulary tokens 

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Note-On

0 127

0 127

0 127

0 127

0 127

0 127

0 127

0 127

Note-Off

Set-Velocity

Time-Shift

0 31

0 990 31

0 31

0 31

0 99

0 99

0 99



MIDI Tokenization

● The time shift event compresses sustained note states into a single event

○ A typical 30-sec clip might contain about 1200 event tokens

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018



RNN-based Model: Training

● Data augmentation 

○ Tempo change and key transpose

● Three layers of LSTMs and the softmax output

○ One-hot MIDI-like event vector

○ The cross-entropy loss 

○ Teacher-forcing: the ground output is used for input 

instead of the predicted output in the training phase

This Time with Feeling: Learning Expressive Musical Performance Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018

𝑝(𝑥5|𝑥1, … , 𝑥4)

𝑥1 𝑥2 𝑥3 𝑥4

. . .

. . .

ො𝑥2 ො𝑥3 ො𝑥4 ො𝑥5



RNN-based Model: Inference

● Generate the output using the trained model 

○ Start from a random sample (unconditional) or an initial conditional input 

(“priming” or “continuation”)

○ Sample from the softmax output: multinomial distribution 

○ The sampled output is used as input at the next step

ො𝑥2 ො𝑥3 ො𝑥4

ො𝑥2 ො𝑥3 ො𝑥4 ො𝑥5

. . .

Sample

An intuitive animation about auto-regressive models: https://twitter.com/i/status/1327775912352493568

https://twitter.com/i/status/1327775912352493568


RNN-based Model: Inference

● The softmax temperature controls musical diversity

○ 𝜏 > 1 : 𝑃𝑡 becomes more uniform 
■ More diverse output are generated

○ 𝜏 < 1 : 𝑃𝑡 becomes more spiky 
■ Less diverse output are generated

Softmax output

𝑃𝑡 𝑤 =
exp(𝑆𝑤/𝜏)

σ𝑤′ exp(𝑆𝑤′/𝜏)

𝜏 > 1

𝜏 = 1

𝜏 < 1



RNN-based Model: Result

● Generation examples (unconditional generation)

○ https://magenta.tensorflow.org/performance-rnn

● Issues

○ The result sounds natural in short terms but note patterns are not coherent 

and keeps diverging: the long-term dependency issue

○ Need better models capable of learning wider music context

𝜏 = 1 𝜏 = 1.5𝜏 = 0.9

https://magenta.tensorflow.org/performance-rnn


Evaluating Music Language Model 

● Objective evaluation

○ Perplexity (PPL): measure the likelihood of the generated output 
■ Inverse probability of the corpus

■ Lower PPL is better

○ Comparing musical statistics
■ Pitch: pitch count, pitch class histogram, pitch transition histogram, pitch range

■ Rhythm: note count, average inter-onset-interval, note length histogram, note 

length transition histogram

● Subjective evaluation 

○ Mean opinion score (MOS): scale from 1 to 5 

𝑃 𝑋 = ෑ

𝑡=1

𝑇

(
1

𝑃𝐿𝑀 𝑥𝑡 𝑥<𝑡
)1/𝑇

On the evaluation of generative models in music, Li-Chia Yang, Alexander Lerch, Neural Computing and Applications, 2020



Issue in the RNN-based Model

● There is a large contextual gap between the input and the output

○ For different random inputs, the generated output sequences will be arbitrary

Generative 
Model

Random

Seed
𝑥1 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …



Issue in the RNN-based Model

● Can we feed a random continuous vector that governs the entire context 

of the output such that the input renders a smooth transition of 

generated sequences ? 

Generative 
Model

ℎRandom

Continuous Vector 
𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …



Auto-Encoder

● We can compress the context of the sequence into a single vector using 

the auto-encoder structure

○ But, can we sample a random vector and generate a meaningful sequence 

from the latent space? 

Generative 
Model

ℎEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Random

Continuous Vector? 



Auto-Encoder

● The latent space may not be continuous

○ There are empty space between the latent vector clusters

○ The generated output from the empty space will be different from what you 

expect to have

DecoderℎEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Random

Continuous Vector? 

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Variational Auto Encoder (VAE)

● Model the latent space using randomly sampled latent vectors with a 

probabilistic model such as Gaussian

○ The encoder yield two vectors for mean and standard deviation

DecoderEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Mean

Standard

Deviation

random sample = 𝜇 + 𝜎𝑧
(𝑧~𝒩 (0, I))

𝜎

𝜇
ℎ



Variational Auto Encoder (VAE)

● Optimize the network using the maximum likelihood estimation

○ The estimation is intractable and so an approximated method is used:
■ Maximize the lower bound of the log likelihood 

○ This ends up with minimizing two terms: the reconstruction error and KL 

divergence between the Gaussian distributions

𝑙 𝑊; 𝑥 = 𝑥 − ො𝑥 2 + 𝐾𝐿(𝒩(𝜇 𝑥 , 𝜎 𝑥 ) ∥ 𝒩 0, I )

Reconstruction error KL divergence: make the distribution of 

latent vectors have  zero mean and unit 
variance 

Auto-Encoding Variational Bayes, Diederik Kingma, Max Welling, 2014



Variational Auto Encoder (VAE)

● Re-parameterization 

○ Enables gradient flow by detouring the sampling process

DecoderEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Mean

Standard

Deviation

𝜎

𝜇
ℎ

random sample

𝑧~𝒩 (0, I)

+

×



Variational Auto Encoder (VAE)

● Distribution in the latent space

○ By using both KL divergence and reconstruction error, the space can be 

discriminative as well as continuous  

Reconstruction only KL divergence only Both

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


Variational Auto Encoder (VAE)

● The encoder-decoder can be any neural network module

○ CNN: image audio

○ RNN: text, symbolic music

Encoder
Decoder/
Generator

Encoder Decoder/Generator

VAE with CNN VAE with RNN 

Sample

“I” “love” “you” <EOS>

“I” “love” “you” 

“I” “Love” “you” 

<EOS>Sample



Variational Auto Encoder (VAE)

● Generate data by taking a random vector from the unit Gaussian

○ Data manifold are generated from varying 𝑧

Decoder/
Generator

random sample

𝑧~𝒩 (0, I)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 201892

Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Auto-Encoding Variational Bayes, Diederik Kingma, Max Welling, 2014

𝑧1

(circle 
shape)

𝑧2 (tilt + more )

𝑧1

(smile)

𝑧2 (pose)

Generation from the 2-D latent space 𝑧



Variational Auto Encoder (VAE)

● Generate data by taking a random vector from the unit Gaussian

○ Data manifold are generated from varying 𝑧

Decoder/Generator

Generating Sentences from a Continuous Space, Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, Samy Bengio, 2016

random sample

𝑧~𝒩 (0, I)
Interpolated sentences between pairs of random points in the 

latent space 𝑧



MusicVAE

● Encoder: bidirectional RNN

○ The two hidden units at both ends are concatenated

○ The latent vector corresponds to a measure-level unit (2 bar ~ 16 bars)

● Decoder: hierarchical RNN

○ Conductor RNN: learns high-level 

dependency in the measure level

○ Language model RNN: condition 

from the conductor RNN is 

concatenated with the previous 

output as input at the next step

A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music, Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, Douglas Eck, 2018



MusicVAE

● Training dataset

○ The Lakh MIDI dataset: Multi-track score MIDI

○ Use piano roll but quantized notes to 16th note events

○ Handle monophonic note sequences only (melody notes)

○ One event is 130 dimensional vector: note on (128 pitches), note off, rest  

○ The input length of RNN (𝑇) is 256 which corresponds to 16 measures (bars)



MusicVAE

● Generate a continuous transition of music generation on the latent space

○ Beat-blender: continuous move on the latent space to generate

gradually changing music sequence

○ Melody mix: interpolation between two different melodies 

● Demo 

○ https://magenta.tensorflow.org/music-vae

Melody Mixer (interpolation)

Beat blender 

(latent space exploration) 

https://magenta.tensorflow.org/music-vae


2D Models

● Generate music data as a 2D image

○ Symbolic domain: MIDI 

○ Audio domain: spectrograms or other time-frequency representations

● Image generation models

○ VAE, GAN, Diffusion, … 

Decoder/
Generator

random sample

𝑧~𝒩 (0, I)



Variational Auto Encoder (VAE) for 2D Image Generation

● CNNs or Transformers are commonly used in this setting

○ Fast generation using parallel computing

○ The latent vector can be used to control the global structure

○ However, the generated result is often blurry (L1 or L2 distance)

Encoder
Decoder/
Generator

L1 or L2 distance

random sample

𝑧~𝒩 (0, I)
Original data Original dataGenerated output 



Generative Adversarial Network (GAN) 

● Two-player game 

○ Discriminator network: distinguish the generated output from the real ones 

○ Generator network: fool the discriminator by generating the realistic output 

“1” or “0”

Generator

random sample

𝑧~𝒩 (0, I)
DiscriminatorOriginal data

Generated output 

Generative Adversarial Networks, Ian J. Goodfellow et al., NIPS, 2014



Training GAN

● Step #1: initialize the generator and discriminator networks

● Step #2: fix the generator network and generate the output

● Step #3: update the discriminator network as a binary classifier

“1” or “0”

Generator
random sample

𝑧~𝒩 (0, I)

DiscriminatorOriginal data

Generated output 

Update

Back-propagation on this network



Training GAN

● Step #4: fix the discriminator network and update the generator network 

○ Try to fool the discriminator by increasing the output score (or generating 

real-looking images)

● Step #5: repeat step #2, #3, and #4 until convergence 

Generator
random sample

𝑧~𝒩 (0, I) Discriminator

Generated output 
Update

Back-propagation on this network

“1”

Increasing score



Generative Adversarial Network (GAN) 

● Minimize the minimax loss

○ Discriminator: maximize the objective function such that 𝐷 𝑥 is close to 1 

and 𝐷 𝐺 𝑥 is close to 0

○ Generator: minimize the objective function such that 𝐷 𝐺 𝑥 is close to 1

min
𝐺

max
𝐷

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑃𝑧(𝑧) log(1 − 𝐷 𝐺 𝑥 )

Positive examples Negative examples(Negative) logistic loss: 



Generative Adversarial Network (GAN) 

● Alternatively, 

○ Discriminator: maximize the objective function such that 𝐷 𝑥 is close to 1 

and 𝐷 𝐺 𝑥 is close to 0

■ Gradient ascent on the discriminator

○ Generator: maximum the objective function such that 𝐷 𝐺 𝑥 is close to 1

■ Gradient ascent on the generator

■ This alternative objective is more easily trained 

max
𝐷

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑃𝑧(𝑧) log(1 − 𝐷 𝐺 𝑥 )

min
𝐺

𝐸𝑧~𝑃𝑧(𝑧) log(1 − 𝐷 𝐺 𝑥 ) max
𝐺

𝐸𝑧~𝑃𝑧(𝑧) log 𝐷 𝐺 𝑥

[Stanford CS231n]



Issue in Training GAN

● The discriminator provides the generator with gradients as a guidance 

for improvement

○ Discrimination is easier than generation 

○ Discriminator tends to provide large gradients 

○ Result in unstable training of the generator

● There are alternatives of the original minimax loss

○ Wasserstein loss: critic instead of discriminator

○ Boundary Equilibrium GAN (BEGAN): fast and stable convergence 

● Readings

○ https://lilianweng.github.io/posts/2017-08-20-gan/

○ https://arxiv.org/abs/2001.06937 

https://lilianweng.github.io/posts/2017-08-20-gan/
https://lilianweng.github.io/posts/2017-08-20-gan/


GAN vs VAE

● When a model does not have enough capacity to capture all the 

variability in the data, different compromises can be made

○ GAN has the mode-seeking nature: causes mode collapse or mode missing

○ VAE has the mode-covering nature: causes blurred output 

Image source: Sander Dieleman: https://sander.ai/2020/03/24/audio-generation.html

https://sander.ai/2020/03/24/audio-generation.html


MIDINet

● Convolutional GAN for one-bar melody generation

○ Generate a piano-roll matrix

○ Conditioned on the previous bar or on the chord 

MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation, Yang et al., ISMIR, 2017

Demo page: https://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html

https://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html


MuseGAN

● Convolutional GAN for multi-track MIDI generation

○ 5 tracks (bass, drum, guitar, piano, strings& others) and 4 bars

○ Learn cross-track and cross-bar dependency 

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, Dong et al., AAAI 2018

5 generators

& 1 discriminator



MuseGAN

● Convolutional GAN for multi-track MIDI generation

○ 5 tracks (bass, drum, guitar, piano, strings& others) and 4 bars

○ Learn cross-track and cross-bar dependency 

Demo page: https://hermandong.com/musegan/

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, Dong et al., AAAI 2018

https://hermandong.com/musegan/
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