
Juhan Nam

GCT634/AI613: Musical Applications of Machine Learning

Symbolic Music Generation: Basics

Overview of Symbolic Music Generation

● Symbolic music formats

○ MIDI, typesetting (e.g. musicXML), text-based notations (e.g. ABC)

● Tasks

○ Melody-to-Melody or Song-to-Song: continuation, interpolation, infilling

○ Melody-to-{Song, Chord, Lyrics, …}: harmonization/arrangement

○ Score-to-Performance MIDI: performance rendering

● Song continuation

MuseNet

https://openai.com/index/musenet/

https://openai.com/index/musenet/

● Harmonization

CoCoNet

https://magenta.tensorflow.org/coconet

https://magenta.tensorflow.org/coconet

VirtuosoNet (2019)

● Music XML → Performance MIDI

KAIST Music and Audio Computing Lab

Overview of Symbolic Music Generation

● 1D Models

○ Represent symbolic music data as discretized token sequences

○ Train a language model using the 1D token sequences

○ Generate new tokens from the trained model in an auto-regressive way

● 2D Models

○ Represent symbolic music data as continuous image streams (piano-roll)

○ Train an image generation model using the 2D image

○ Generate new image outputs from the trained model chunk by chunk

MIDI

● Standard protocol of musical events

● Why MIDI?

○ Need of musical communication among different vendors’ instruments

○ Store music events (score or performance) for composers

● Hardware

○ 5-pin cables, separate in/out in connection

○ 31250 bits per second

● Software (Protocols)

○ Note number/velocity, control data

MIDI

● MIDI Message Format

Status Byte Data Byte1 Data Byte2

1000 xxxx Note Number VelocityNote Off

1001 xxxx Note Number VelocityNote On

1010 xxxx Note Number VelocityNote Pressure

1011 xxxx Ctrl. Number Ctrl ValueControl Change

1100 xxxx Prog. Number -Program Change

xxxx: channel number (0-15) Data byte: 0-127 (MSB is 0)

1110 xxxx Value (high 7bits) Value (low 7bits)Pitch Bend Change

64: piano sustain pedal

MIDI as a File (.mid)

● Time signature (e.g. 4/4) and tempo (120 bpm) added

○ Time unit is changed to measure/beat unit

○ Time resolution: “tick” (e.g. 9600 ticks/beat)

○ A time interval from the previous event is added to

each MIDI message

● MIDI Representations

○ 1D sequence of note events

○ 2D piano-roll images

● “Score MIDI” vs. “Performance MIDI”

○ The beat unit is not meaningful in

Performance MIDI

Source: https://kr.mathworks.com/help/audio/ug/convert-midi-files-into-midi-messages.html

MusicXML

● Markup language for music typesetting (or engraving)

○ Aim to render a realistic music score

● Can be converted to MIDI but lose information (expressions, clef,

articulation)

● There are other music typesetting formats: Lilypond, MEI, …

MakeMusic, Inc. Page 10 December 2017

"Hello World" in MusicXML
Brian Kernighan and Dennis Ritchie popularized the practice of writing a program that prints the

words "hello, world" as the first program to write when learning a new programming language. It

is the minimal program that tests how to build a program and display its results.

In MusicXML, a song with the lyrics "hello, world" is actually more complicated than we need

for a simple MusicXML file. Let us keep things even simpler: a one-measure piece of music that

contains a whole note on middle C, based in 4/4 time:

Here it is in MusicXML:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE score-partwise PUBLIC

 "-//Recordare//DTD MusicXML 3.1 Partwise//EN"

 "http://www.musicxml.org/dtds/partwise.dtd">

<score-partwise version="3.1">

 <part-list>

 <score-part id="P1">

 <part-name>Music</part-name>

 </score-part>

 </part-list>

 <part id="P1">

 <measure number="1">

 <attributes>

 <divisions>1</divisions>

 <key>

 <fifths>0</fifths>

 </key>

 <time>

 <beats>4</beats>

 <beat-type>4</beat-type>

 </time>

 <clef>

 <sign>G</sign>

 <line>2</line>

 </clef>

 </attributes>

 <note>

 <pitch>

 <step>C</step>

 <octave>4</octave>

 </pitch>

 <duration>4</duration>

 <type>whole</type>

 </note>

 </measure>

 </part>

</score-partwise>

Let's look at each part in turn:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

MIDI

ABC Notation

● A simplified musical notation format

○ Focus on monophonic melody

● There are other simplified music notation formats

○ Humdrum (kern representation), JAM notation (chord), Music Macro

Language (game music)

https://en.wikipedia.org/wiki/ABC_notation

https://en.wikipedia.org/wiki/ABC_notation

1D Models

● Language model in natural language processing

○ Auto-regressive model: predict what comes next

● Musical language model

○ Predict what comes next in a note sequence

𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

𝑥𝑖: input/output representation vector

𝑥1 𝑥2 𝑥3 𝑥4…

The sky is so

𝑥1 𝑥2 𝑥3 𝑥4…

blue

dark

beautiful Language Model

Tokenization

● Segment the data into a sequence of tokens

○ A token is one of the vocabulary formed by the tokenization methods

○ It is represented as an one-hot vector or an index number

● Language tokenization

○ Character → Sub-word → Word

■ A trade-off between vocabulary size and sequence length

■ Out-of-vocabulary issue

○ Byte-pair encoding (BPE) is used for the sub-word tokenization

● Symbolic music tokenization

○ MIDI-like, REMI, CPWord, Octuple, MMM, …

○ https://miditok.readthedocs.io/

https://miditok.readthedocs.io/

Learning models

● Need to learn the structure of music

○ Melody and accompaniment

○ Repetition and variation (self similarity)

○ Consistent generation: note patterns or style

● Learning Models

○ RNN, VAE, Transformer

● Model evaluation

○ Objective: statistical metrics

○ Subjective: listening test

PerformanceRNN

● Dataset and goal

○ MAESTRO: performance piano MIDI files

○ Simultaneously composting and performing piano music

● Tokenization

○ “MIDI-like”

● Models

○ A simple auto-regressive RNN model

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018

MIDI Tokenization

● Four types of MIDI-like event

○ Note-on (128 pitches), note-off (128 pitches), set-velocity (32 quantized

velocities), time-shift (100 shifts: 10ms to 1000 ms)

○ 388-dim one-hot vector (388=128+128+32+100) → 388 vocabulary tokens

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Note-On

0 127

0 127

0 127

0 127

0 127

0 127

0 127

0 127

Note-Off

Set-Velocity

Time-Shift

0 31

0 990 31

0 31

0 31

0 99

0 99

0 99

MIDI Tokenization

● The time shift event compresses sustained note states into a single event

○ A typical 30-sec clip might contain about 1200 event tokens

This Time with Feeling: Learning Expressive Musical Performance: Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018

RNN-based Model: Training

● Data augmentation

○ Tempo change and key transpose

● Three layers of LSTMs and the softmax output

○ One-hot MIDI-like event vector

○ The cross-entropy loss

○ Teacher-forcing: the ground output is used for input

instead of the predicted output in the training phase

This Time with Feeling: Learning Expressive Musical Performance Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, Karen Simonyan, 2018

𝑝(𝑥5|𝑥1, … , 𝑥4)

𝑥1 𝑥2 𝑥3 𝑥4

. . .

. . .

ො𝑥2 ො𝑥3 ො𝑥4 ො𝑥5

RNN-based Model: Inference

● Generate the output using the trained model

○ Start from a random sample (unconditional) or an initial conditional input

(“priming” or “continuation”)

○ Sample from the softmax output: multinomial distribution

○ The sampled output is used as input at the next step

ො𝑥2 ො𝑥3 ො𝑥4

ො𝑥2 ො𝑥3 ො𝑥4 ො𝑥5

. . .

Sample

An intuitive animation about auto-regressive models: https://twitter.com/i/status/1327775912352493568

https://twitter.com/i/status/1327775912352493568

RNN-based Model: Inference

● The softmax temperature controls musical diversity

○ 𝜏 > 1 : 𝑃𝑡 becomes more uniform
■ More diverse output are generated

○ 𝜏 < 1 : 𝑃𝑡 becomes more spiky
■ Less diverse output are generated

Softmax output

𝑃𝑡 𝑤 =
exp(𝑆𝑤/𝜏)

σ𝑤′ exp(𝑆𝑤′/𝜏)

𝜏 > 1

𝜏 = 1

𝜏 < 1

RNN-based Model: Result

● Generation examples (unconditional generation)

○ https://magenta.tensorflow.org/performance-rnn

● Issues

○ The result sounds natural in short terms but note patterns are not coherent

and keeps diverging: the long-term dependency issue

○ Need better models capable of learning wider music context

𝜏 = 1 𝜏 = 1.5𝜏 = 0.9

https://magenta.tensorflow.org/performance-rnn

Evaluating Music Language Model

● Objective evaluation

○ Perplexity (PPL): measure the likelihood of the generated output
■ Inverse probability of the corpus

■ Lower PPL is better

○ Comparing musical statistics
■ Pitch: pitch count, pitch class histogram, pitch transition histogram, pitch range

■ Rhythm: note count, average inter-onset-interval, note length histogram, note

length transition histogram

● Subjective evaluation

○ Mean opinion score (MOS): scale from 1 to 5

𝑃 𝑋 = ෑ

𝑡=1

𝑇

(
1

𝑃𝐿𝑀 𝑥𝑡 𝑥<𝑡
)1/𝑇

On the evaluation of generative models in music, Li-Chia Yang, Alexander Lerch, Neural Computing and Applications, 2020

Issue in the RNN-based Model

● There is a large contextual gap between the input and the output

○ For different random inputs, the generated output sequences will be arbitrary

Generative
Model

Random

Seed
𝑥1 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Issue in the RNN-based Model

● Can we feed a random continuous vector that governs the entire context

of the output such that the input renders a smooth transition of

generated sequences ?

Generative
Model

ℎRandom

Continuous Vector
𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Auto-Encoder

● We can compress the context of the sequence into a single vector using

the auto-encoder structure

○ But, can we sample a random vector and generate a meaningful sequence

from the latent space?

Generative
Model

ℎEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Random

Continuous Vector?

Auto-Encoder

● The latent space may not be continuous

○ There are empty space between the latent vector clusters

○ The generated output from the empty space will be different from what you

expect to have

DecoderℎEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Random

Continuous Vector?

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Auto Encoder (VAE)

● Model the latent space using randomly sampled latent vectors with a

probabilistic model such as Gaussian

○ The encoder yield two vectors for mean and standard deviation

DecoderEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Mean

Standard

Deviation

random sample = 𝜇 + 𝜎𝑧
(𝑧~𝒩 (0, I))

𝜎

𝜇
ℎ

Variational Auto Encoder (VAE)

● Optimize the network using the maximum likelihood estimation

○ The estimation is intractable and so an approximated method is used:
■ Maximize the lower bound of the log likelihood

○ This ends up with minimizing two terms: the reconstruction error and KL

divergence between the Gaussian distributions

𝑙 𝑊; 𝑥 = 𝑥 − ො𝑥 2 + 𝐾𝐿(𝒩(𝜇 𝑥 , 𝜎 𝑥) ∥ 𝒩 0, I)

Reconstruction error KL divergence: make the distribution of

latent vectors have zero mean and unit
variance

Auto-Encoding Variational Bayes, Diederik Kingma, Max Welling, 2014

Variational Auto Encoder (VAE)

● Re-parameterization

○ Enables gradient flow by detouring the sampling process

DecoderEncoder 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, …

Mean

Standard

Deviation

𝜎

𝜇
ℎ

random sample

𝑧~𝒩 (0, I)

+

×

Variational Auto Encoder (VAE)

● Distribution in the latent space

○ By using both KL divergence and reconstruction error, the space can be

discriminative as well as continuous

Reconstruction only KL divergence only Both

Source: https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Variational Auto Encoder (VAE)

● The encoder-decoder can be any neural network module

○ CNN: image audio

○ RNN: text, symbolic music

Encoder
Decoder/
Generator

Encoder Decoder/Generator

VAE with CNN VAE with RNN

Sample

“I” “love” “you” <EOS>

“I” “love” “you”

“I” “Love” “you”

<EOS>Sample

Variational Auto Encoder (VAE)

● Generate data by taking a random vector from the unit Gaussian

○ Data manifold are generated from varying 𝑧

Decoder/
Generator

random sample

𝑧~𝒩 (0, I)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 12 - May 15, 201892

Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Auto-Encoding Variational Bayes, Diederik Kingma, Max Welling, 2014

𝑧1

(circle
shape)

𝑧2 (tilt + more)

𝑧1

(smile)

𝑧2 (pose)

Generation from the 2-D latent space 𝑧

Variational Auto Encoder (VAE)

● Generate data by taking a random vector from the unit Gaussian

○ Data manifold are generated from varying 𝑧

Decoder/Generator

Generating Sentences from a Continuous Space, Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, Samy Bengio, 2016

random sample

𝑧~𝒩 (0, I)
Interpolated sentences between pairs of random points in the

latent space 𝑧

MusicVAE

● Encoder: bidirectional RNN

○ The two hidden units at both ends are concatenated

○ The latent vector corresponds to a measure-level unit (2 bar ~ 16 bars)

● Decoder: hierarchical RNN

○ Conductor RNN: learns high-level

dependency in the measure level

○ Language model RNN: condition

from the conductor RNN is

concatenated with the previous

output as input at the next step

A Hierarchical Latent Vector Model for Learning Long-Term Structure in Music, Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, Douglas Eck, 2018

MusicVAE

● Training dataset

○ The Lakh MIDI dataset: Multi-track score MIDI

○ Use piano roll but quantized notes to 16th note events

○ Handle monophonic note sequences only (melody notes)

○ One event is 130 dimensional vector: note on (128 pitches), note off, rest

○ The input length of RNN (𝑇) is 256 which corresponds to 16 measures (bars)

MusicVAE

● Generate a continuous transition of music generation on the latent space

○ Beat-blender: continuous move on the latent space to generate

gradually changing music sequence

○ Melody mix: interpolation between two different melodies

● Demo

○ https://magenta.tensorflow.org/music-vae

Melody Mixer (interpolation)

Beat blender

(latent space exploration)

https://magenta.tensorflow.org/music-vae

2D Models

● Generate music data as a 2D image

○ Symbolic domain: MIDI

○ Audio domain: spectrograms or other time-frequency representations

● Image generation models

○ VAE, GAN, Diffusion, …

Decoder/
Generator

random sample

𝑧~𝒩 (0, I)

Variational Auto Encoder (VAE) for 2D Image Generation

● CNNs or Transformers are commonly used in this setting

○ Fast generation using parallel computing

○ The latent vector can be used to control the global structure

○ However, the generated result is often blurry (L1 or L2 distance)

Encoder
Decoder/
Generator

L1 or L2 distance

random sample

𝑧~𝒩 (0, I)
Original data Original dataGenerated output

Generative Adversarial Network (GAN)

● Two-player game

○ Discriminator network: distinguish the generated output from the real ones

○ Generator network: fool the discriminator by generating the realistic output

“1” or “0”

Generator

random sample

𝑧~𝒩 (0, I)
DiscriminatorOriginal data

Generated output

Generative Adversarial Networks, Ian J. Goodfellow et al., NIPS, 2014

Training GAN

● Step #1: initialize the generator and discriminator networks

● Step #2: fix the generator network and generate the output

● Step #3: update the discriminator network as a binary classifier

“1” or “0”

Generator
random sample

𝑧~𝒩 (0, I)

DiscriminatorOriginal data

Generated output

Update

Back-propagation on this network

Training GAN

● Step #4: fix the discriminator network and update the generator network

○ Try to fool the discriminator by increasing the output score (or generating

real-looking images)

● Step #5: repeat step #2, #3, and #4 until convergence

Generator
random sample

𝑧~𝒩 (0, I) Discriminator

Generated output
Update

Back-propagation on this network

“1”

Increasing score

Generative Adversarial Network (GAN)

● Minimize the minimax loss

○ Discriminator: maximize the objective function such that 𝐷 𝑥 is close to 1

and 𝐷 𝐺 𝑥 is close to 0

○ Generator: minimize the objective function such that 𝐷 𝐺 𝑥 is close to 1

min
𝐺

max
𝐷

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑃𝑧(𝑧) log(1 − 𝐷 𝐺 𝑥)

Positive examples Negative examples(Negative) logistic loss:

Generative Adversarial Network (GAN)

● Alternatively,

○ Discriminator: maximize the objective function such that 𝐷 𝑥 is close to 1

and 𝐷 𝐺 𝑥 is close to 0

■ Gradient ascent on the discriminator

○ Generator: maximum the objective function such that 𝐷 𝐺 𝑥 is close to 1

■ Gradient ascent on the generator

■ This alternative objective is more easily trained

max
𝐷

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) log 𝐷 𝑥 + 𝐸𝑧~𝑃𝑧(𝑧) log(1 − 𝐷 𝐺 𝑥)

min
𝐺

𝐸𝑧~𝑃𝑧(𝑧) log(1 − 𝐷 𝐺 𝑥) max
𝐺

𝐸𝑧~𝑃𝑧(𝑧) log 𝐷 𝐺 𝑥

[Stanford CS231n]

Issue in Training GAN

● The discriminator provides the generator with gradients as a guidance

for improvement

○ Discrimination is easier than generation

○ Discriminator tends to provide large gradients

○ Result in unstable training of the generator

● There are alternatives of the original minimax loss

○ Wasserstein loss: critic instead of discriminator

○ Boundary Equilibrium GAN (BEGAN): fast and stable convergence

● Readings

○ https://lilianweng.github.io/posts/2017-08-20-gan/

○ https://arxiv.org/abs/2001.06937

https://lilianweng.github.io/posts/2017-08-20-gan/
https://lilianweng.github.io/posts/2017-08-20-gan/

GAN vs VAE

● When a model does not have enough capacity to capture all the

variability in the data, different compromises can be made

○ GAN has the mode-seeking nature: causes mode collapse or mode missing

○ VAE has the mode-covering nature: causes blurred output

Image source: Sander Dieleman: https://sander.ai/2020/03/24/audio-generation.html

https://sander.ai/2020/03/24/audio-generation.html

MIDINet

● Convolutional GAN for one-bar melody generation

○ Generate a piano-roll matrix

○ Conditioned on the previous bar or on the chord

MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation, Yang et al., ISMIR, 2017

Demo page: https://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html

https://richardyang40148.github.io/TheBlog/midinet_arxiv_demo.html

MuseGAN

● Convolutional GAN for multi-track MIDI generation

○ 5 tracks (bass, drum, guitar, piano, strings& others) and 4 bars

○ Learn cross-track and cross-bar dependency

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, Dong et al., AAAI 2018

5 generators

& 1 discriminator

MuseGAN

● Convolutional GAN for multi-track MIDI generation

○ 5 tracks (bass, drum, guitar, piano, strings& others) and 4 bars

○ Learn cross-track and cross-bar dependency

Demo page: https://hermandong.com/musegan/

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment, Dong et al., AAAI 2018

https://hermandong.com/musegan/

	Slide 1: GCT634/AI613: Musical Applications of Machine Learning Symbolic Music Generation: Basics
	Slide 2: Overview of Symbolic Music Generation
	Slide 3: MuseNet
	Slide 4: CoCoNet
	Slide 5: VirtuosoNet (2019)
	Slide 6: Overview of Symbolic Music Generation
	Slide 7: MIDI
	Slide 8: MIDI
	Slide 9: MIDI as a File (.mid)
	Slide 10: MusicXML
	Slide 11: ABC Notation
	Slide 12: 1D Models
	Slide 13: Tokenization
	Slide 14: Learning models
	Slide 15: PerformanceRNN
	Slide 16: MIDI Tokenization
	Slide 17: MIDI Tokenization
	Slide 18: RNN-based Model: Training
	Slide 19: RNN-based Model: Inference
	Slide 20: RNN-based Model: Inference
	Slide 21: RNN-based Model: Result
	Slide 22: Evaluating Music Language Model
	Slide 23: Issue in the RNN-based Model
	Slide 24: Issue in the RNN-based Model
	Slide 25: Auto-Encoder
	Slide 26: Auto-Encoder
	Slide 27: Variational Auto Encoder (VAE)
	Slide 28: Variational Auto Encoder (VAE)
	Slide 29: Variational Auto Encoder (VAE)
	Slide 30: Variational Auto Encoder (VAE)
	Slide 31: Variational Auto Encoder (VAE)
	Slide 32: Variational Auto Encoder (VAE)
	Slide 33: Variational Auto Encoder (VAE)
	Slide 34: MusicVAE
	Slide 35: MusicVAE
	Slide 36: MusicVAE
	Slide 37: 2D Models
	Slide 38: Variational Auto Encoder (VAE) for 2D Image Generation
	Slide 39: Generative Adversarial Network (GAN)
	Slide 40: Training GAN
	Slide 41: Training GAN
	Slide 42: Generative Adversarial Network (GAN)
	Slide 43: Generative Adversarial Network (GAN)
	Slide 44: Issue in Training GAN
	Slide 45: GAN vs VAE
	Slide 46: MIDINet
	Slide 47: MuseGAN
	Slide 48: MuseGAN

